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 Abstract 

The measurement of the impulse response of microphones is crucial to understand their temporal 

properties. Little information is disclosed by manufacturers, claiming this is hard to measure due 

to the requirement of specific hardware and the risk of non-linear response of the microphone. 

Both objections could be circumvented by using Gaussian distributed white noise as exciting signal 

and the cross correlation technique. As the use of a loudspeaker is required, a major stumbling 

block is the requirement of deconvolution of the obtained impulse response. This study shows that 

the deconvolution is feasible in case of a measured impulse response of a loudspeaker and the 

impulse response of a modelled (and thus well known) microphone, even if the impulse response 

of the loudspeaker is significantly wider than the impulse response of the microphone. 

 

 Abstract of part 2 

The second part of the feasibility study includes a Monte Carlo simulation of the actual 

measurement procedure, including the exciting Gaussian distributed white noise signal. The 

exciting signal has been verified to fulfill the requirements for this application. The main 

conclusion is that the technique is feasible for the determination of the microphone impulse 

response, but the results show some slight imperfections, which can be reduced by using the same 

noise signal for the determination of the impulse response of the loudspeaker. 

The major conclusion of both parts is that the measurement of the microphone impulse response 

using noise is feasible without special hardware and that there is no reason for manufacturers to 

keep this information away from users. 

 

1. Introduction 

Sound, including music, is recorded using microphones, so it is an essential link in the chain. But 

the question arises how well these perform perceptually. Of course, the frequency response should 

cover the range from 20 Hz to 20 kHz, but is this response the only parameter which determines 

the perceived quality? For a long time, the frequency response in the audio band has been regarded 

as a major parameter, another one being the harmonic distortion. However, the experiences with 

CD reconstruction filters and high resolution digital formats have revealed that the perceived 

quality also depends on the properties of the anti-aliasing and reconstruction filtering: the response 

above 20 kHz is important for the perceived quality (ref. 1). 



As the microphone also acts as a (lowpass) filter, it is clear that other properties are of importance 

too, including its response above 20 kHz. Although response measurements above 20 kHz can be 

made, this is usually limited to the modulus of the response, the phase response is either not 

measured or not reported in public domain. The combined modulus and phase responses determine 

the temporal response of the microphone and there are clear indications that the temporal response 

is of importance for the perceived quality (ref. 2). However, it is not common practice to publish 

the impulse response of microphones in the datasheets, provided by the manufacturers. 

Regretfully, as an impulse response covers both the frequency and the phase responses of the 

device. This kind of information would be very useful for the application and comparison of 

microphones. 

Whether difficulties to measure the impulse response or the revelation of the non-ideal properties 

of the microphone lie at the basis of this reluctance remains unclear, Yet, some manufacturers do 

provide impulse responses (ref. 3). In this paper we will describe an alternative way to measure 

the impulse response of microphones using noise. By this approach, some stumbling blocks, which 

occur with the more common approach using sparks, can be circumvented. In sec. 2, the basic 

technique is described, including the mathematics. In sec. 3 a simulation and its results will be 

presented, followed by a discussion on the feasibility of this technique for use in practical 

situations. In sec. 4, conclusions will be reported and suggestions for future work listed. 

2. The basic technique and the related mathematics 

2.1 The problems with the spark technique 

It is logical to measure an impulse response with an impulse. But it is not easy to create a sound, 

sufficiently resembling an impulse, which can be used for this purpose. The currently best option 

is to use the sound, generated by a spark discharge. However, a close look at its properties reveals 

that it is not perfect in frequency domain (ref. 4) and thus neither in time domain. Also, no two 

sparks are completely identical.  

And there is another problem: the spark generates a high sound pressure level, so how can be 

certified that the microphone is still operating in its linear range? This problem could be tackled 

by using a smaller, less powerful, spark, but that will decrease the signal-to-noise ratio (SNR). The 

SNR can be improved by ‘conditional averaging’ (ref. 5), but this requires a complete absence of 

ambiguity in the sound, generated by all the individual sparks. This is, probably, asking too much, 

leading to a ‘smear’ of the averaged impulse response, an undesirable phenomenon, exactly the 

opposite of what needs to be achieved. 

It thus shows that the ‘spark’ technique has its limitations and stumbling blocks, which hamper its 

application. Therefore, a different technique to measure the impulse response would be attractive, 

especially when this could be realized without the use of very specialized equipment. 

2.2 The use of white noise for the measurement of impulse responses 

From stochastic signal analysis, it is known that there is a one-to-one relation between the transfer 

function of a system and its response to Gaussian distributed white noise (ref. 5). Without repeating 



the theory, some of its theorems will be stated without proof. The ones, which are needed in this 

paper are: 

- The autocorrelation function of white noise is a delta function at τ = 0 (albeit with an 

amplitude of 1 (one)). 

- The cross correlation function between the input Gaussian distributed white noise signal 

and the response of the system equals the impulse response of the system (including its 

time delay). 

From Fourier theory, it is known that multiplying complex valued frequency responses of systems 

equals convolution of the impulse responses in time domain (refs. 6, 7). 

This basically opens the door to measure the impulse response of a system using Gaussian 

distributed white noise. This has the advantage that it can be certified that the system is never 

driven into non-linear responses. Any level of accuracy / uncertainty can be reached by using an 

averaging time as long as needed. 

2.3 Basic set-up for the measurement of the impulse response using white noise 

The problem with this approach when applied to microphones is, of course, the generation of the 

white noise sound. It is no real problem to generate a Gaussian distributed noise signal of the 

required bandwidth and any desired length with computers (ref. 8). Amplifiers, which are able to 

deliver the noise signal with sufficient power over a wide frequency range to a loudspeaker, are 

no problem either. But to create the related sound field, a loudspeaker, which has both a very wide 

frequency response and an excellent impulse response itself, is required. This is not possible with 

the current ‘state of the art’ of loudspeakers. However, there is a way around this problem. 

The loudspeaker can be regarded as a band-pass filter and its properties are completely determined 

by its impulse response. Using an excellent wide-band measurement microphone (which are 

available, e.g. ref. 9) the impulse response of the loudspeaker, used to generate the sound field, 

can be measured. It will be labelled a fls(t). The complex transfer function of the loudspeaker can 

be determined by Fourier Transformation of the impulse response. It will be denoted as Fls(ꞷ). 

The microphone under test (MuT) is also a bandpass filter and its complex transfer function will 

be denoted as Gmp(ꞷ) and its impulse response gmp(t). The overall response of the combination of 

the loudspeaker and the microphone, denoted as Hlm(ꞷ), is, of course, the product of Fls(ꞷ) and 

Gmp(ꞷ). In time domain, this equals the convolution of fls(t) and gmp(t) and this will be denoted as 

hlm(t). When the measurement microphone is replaced by the MuT, the measured impulse response 

equals hlm(t) because the noise is filtered both by the loudspeaker and the MuT. Using the 

independently measured fls(t), gmp(t) can be determined by deconvolution of hlm(t) and fls(t). 

Deconvolution is -in general- a bit tricky. So in this study the feasibility to obtain the impulse 

response of a simulated microphone using the measured impulse response of a tweeter has been 

investigated. The tweeter impulse response has been measured by Geoff Hill (Hill Acoustics) in 

the UK and it is shown in fig. 1. 



   

Figure 1: The measured impulse response of the tweeter, used in this study 

(courtesy of Hill Acoustics). The small peak at approx. 950 µs is probably 

caused by a damped reflection in the tetrahedral anechoic chamber. 

The properties of the simulated microphone are illustrated in fig. 2 (frequency response) and fig. 

3 (impulse response). The properties of the microphone are based on a general approach: the 

frequency response tends to decrease at higher frequencies in the audio band. To increase the 

response in the upper part of the audio band, a slight resonance has been added. This resonance 

can be discerned in the frequency response, but it is far more clear in the impulse response. 

   

Figure 2: The frequency response of the simulated microphone. 



   

Figure 3: The impulse response of the simulated microphone as derived by 

Fourier Transformation of its (complex) frequency response. 

The calculation of the convolution of the impulse responses of the loudspeaker and the microphone 

is straightforward and the result is shown in fig. 4: the signal in time domain as it would come out 

of the MuT when the impulse would be delivered to the loudspeaker directly (and ignoring non-

linearities). In this case, it can also be obtained by cross correlating the input noise signal and the 

output signal of the MuT. The question is now whether it is possible to retrieve the properties of 

the MuT from the impulse response of the loudspeaker and the signal of fig. 4. 

   

Figure 4: The convolution of the impulse responses of the (measured) 

`` tweeter and the simulated microphone. 

 



3. Results and discussion 

The deconvolution process includes the following steps: 

- Fourier transformation of fls(t) to obtain Fls(ꞷ). 

- Fourier transformation of hlm(t), which will yield Hlm(ꞷ), the product of Fls(ꞷ) and Gmp(ꞷ). 

- Dividing Hlm(ꞷ) by Fls(ꞷ), yielding Gmp(ꞷ). 

- Use Gmp(ꞷ) to determine the frequency response of the simulated microphone. 

- Inverse Fourier Transformation of Gmp(ꞷ) to determine the impulse response of the 

simulated microphone. 

The result for the frequency response is shown in fig. 5. The frequency response as used for the 

modelled microphone is shown in fig. 2 and the comparison shows a very good agreement. 

   

Figure 5: The frequency response of the simulated microphone as determined 

from the convoluted impulse response of fig. 4. Compare with fig. 2. 

The impulse response of the microphone, using the deconvolution algorithm, is shown in fig. 6. 

Compared with the impulse response, directly derived from the simulated microphone as shown 

in fig. 3, there are only minor differences, mainly before the onset of the impulse. 



   

Figure 6: The impulse response of the simulated microphone as retrieved 

from the convoluted impulse response of fig. 4. Compare with fig. 3. 

The slight oscillation before the onset of the impulse might be caused by aliasing effects and / or 

truncation errors, but it is not unlikely that a further development of the algorithm can improve the 

result. This is an interesting subject for further work on this technique. 

The deconvolution did yield the frequency response curve very accurately. The impulse response 

also came very close to the actual response. As the impulse response of a real tweeter has been 

used, this major hurdle can be tackled. Even though the impulse response of the tweeter is wider 

than the impulse response of the simulated microphone, the algorithm reproduced it well. Yet, it 

is obvious that the shorter the impulse response of the loudspeaker is, the better the impulse 

response of the MUT can be retrieved. Which is why it is recommended to use a tweeter which 

has excellent temporal properties (ref. 2), but it will still be inferior, compared to the white noise 

signal applied. 

A question is how well the impulse response of the loudspeaker will reproduce in time: how much 

will it have changed between the two successive tests? In this investigation, the same loudspeaker 

impulse response has been used to convolve the microphone impulse response with as is used in 

the deconvolution process. However, in reality the actual loudspeaker impulse response is used 

and is it any different from the stored impulse response, measured previously? This question 

should be addressed in future work. 

If the loudspeaker impulse response is changing noteworthy in time, how sensitive will the derived 

microphone impulse response be for such changes? Such a sensitivity analysis could also be an 

interesting subject for future work too. 

The third issue is whether it is possible to measure the loudspeaker impulse response 

simultaneously with the MuT test by using the measurement microphone at the same time. Do the 

microphone housings influence the responses of the two devices? Is the sound field at both 



positions sufficiently identical to make this a viable option? This also needs to be investigated 

further, most likely by experiments. 

4. Conclusions and future work 

This feasibility study shows that it is possible to determine the impulse response of a microphone 

using Gaussian distributed white noise and a real loudspeaker, in this case a tweeter. The data 

processing is sufficiently accurate, even if the impulse response of the loudspeaker is wider than 

the impulse response of the microphone. The use of Gaussian distributed white noise is very 

attractive as it does not require specialized and / or expensive equipment and it can be certified 

that the microphone under test will never be driven outside its linear range. 

Future work should include i) experiments on the stability / reproducibility of the loudspeaker 

impulse response, ii) a sensitivity analysis for (small) changes in the loudspeaker impulse response 

and iii) the ability to determine the loudspeaker impulse response simultaneously with the test of 

the microphone under test. 

The technique to use Gaussian distributed white noise seems a very promising approach, which 

needs further development. It would enable the determination of microphone impulse responses 

with relatively simple equipment and at low costs. As the impulse response is important for the 

perceived quality of the recorded sound, this would be an important extension of the microphone 

data, available to users. 
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1. Introduction 

In the first part of this study (ref. 1), the feasibility of the measurement of the impulse response of 

a microphone using a real loudspeaker has been investigated. The conclusion was that this is 

feasible under the conditions, stated in the paper. The focus was to look at the essential step: the 

deconvolution of the convolved impulse response of loudspeaker and microphone, using the 

measured impulse response of the loudspeaker. As deconvolution can lead to inaccurate results 

when e.g. the impulse response of the loudspeaker is wider than the impulse response of the 

microphone, this step is not trivial. The above conclusion was reassuring as the results proved to 

be very good, both for the frequency response and the impulse response. Yet, a major step in the 

whole procedure had not been included in the study as reported in part 1: the noise itself. 

In this second part of the study, the measurement procedure with Gaussian distributed white noise 

has been included in the simulation. In sec. 2, the Monte Carlo procedure will be elucidated, in 

sec. 3, the results will be described and discussed. In sec. 4, conclusions and future work will be 

presented. 

2. The extension of the simulation with Gaussian distributed white noise 

The technique under study is to excite the loudspeaker with Gaussian distributed white noise and 

to record the sound from the loudspeaker with the microphone under test (MuT). The signal from 

the microphone is subsequently stored to be cross correlated with the exciting noise signal. For the 

limiting case of the measurement time going to infinity, the cross correlation function is identical 

to the convolution of the impulse responses of the loudspeaker and the MuT. The basics of this 

theory have been presented (without proof) in part 1 and the theory itself can be found in literature 

(e.g. ref. 2). 

In this part of the study, the procedure has been extended with a Monte Carlo simulation of the 

actual measurement procedure. First of all, a computer file, consisting of 5.2 seconds of Gaussian 

distributed white noise has been generated with a sampling frequency of 192 kHz. The same 

sampling frequency has been chosen as for the loudspeaker impulse measurement and the record 

entails 1 million samples. The procedure for its generation can be found in ref. 3; the basics are 

provided in Appendix 1. 

N.B. It should be noted that this signal extends up to 96 kHz as white noise when directly used as 

input to a D/A converter, which could introduce further limitations, due to its reconstruction filter. 

The noise signal, as stored in the file, has been analyzed to verify whether it fulfills the 

requirements for this simulation. This analysis is reported in Appendix 2. 



This noise signal is subsequently convoluted (in time domain) with the measured impulse response 

of the tweeter (see fig. 1 of part 1), resulting in the temporal response of the loudspeaker to such a 

signal. We will refer to the sound, coming from the loudspeaker, as the ‘loudspeaker filtered noise’. 

The loudspeaker filtered noise can subsequently be convoluted (in time domain) with the impulse 

response of the microphone. This results in the temporal output signal of the microphone as it 

would be recorded when the sound field, reaching the microphone, is the loudspeaker filtered 

noise. We will refer to this signal as the ‘microphone output signal’. 

The microphone output signal can now be cross correlated with the Gaussian distributed white 

noise which has excited the loudspeaker. In the ideal case with an infinite averaging time, the cross 

correlation function would be identical to the convolution of the loudspeaker impulse response and 

the microphone impulse response. This has been reported in part 1 and for the ease of comparison, 

the direct convolution result is shown again in fig. 1 below. 

   

Figure 1: The impulse response of the loudspeaker + simulated microphone,  

obtained by direct convolution of the measured loudspeaker impulse response 

and the impulse response of the microphone. For details see figs. 1 and 3 of 

 part 1. 

The cross correlation function is shown in fig. 2 and as can be seen, the differences between figs. 

1 and 2 are invisible to the unaided eye. But this does not yet mean that the results, derived for the 

properties of the microphone are (almost) identical when the cross correlation function is used in 

the deconvolution process. This is an essential requirement for the practical application of the 

technique. Yet, as a preliminary conclusion, it can be stated that the averaging time of 5 seconds 

and 1 million samples is sufficient to approach the theoretical result with a close resemblance. 



   

Figure 2: The cross correlation function between the exciting Gaussian  

distributed white noise and the microphone output signal, converging to  

the impulse response of the loudspeaker + simulated microphone. 

Compare with fig. 1. 

3. Results and discussion 

The cross correlation function of fig. 2 can be used as input for the deconvolution algorithm instead 

of the impulse response of fig. 1. The output of the deconvolution algorithm consists of the 

frequency response curve and the impulse response. These are shown in figs. 3 and 4. 

   

Figure 3: The modulus of the frequency response of the simulated microphone 

as derived by deconvolution of the cross correlation function of fig. 2, using the 

measured impulse response of the loudspeaker as shown in fig. 1 of part 1.  

Compare with figs. 2 and 5 of part 1. 



The frequency response curve is obviously more ‘wiggly’ than the input curve, which is shown in 

fig. 2 of part 1 and the retrieved frequency response curve, using the measured tweeter response, 

shown in fig 5 of part 1. Yet, the overall properties can still be revealed.  

   

Figure 4: The impulse response of the simulated microphone as derived by 

deconvolution of the cross correlation function of fig. 2, using the measured 

impulse response of the loudspeaker as shown in fig. 1 of part 1. Compare 

with figs. 3 and 6 of part 1. 

The impulse response though, is barely indistinguishable from the impulse responses as shown in 

figs. 3 and 6 of part 1. A very detailed comparison shows that the impulse response, derived from 

the cross correlation function, has a very small offset just in advance of the impulse and shows a 

very slight wiggle in the tail, these imperfections are neither present in fig. 6 of part 1. Overall, the 

retrieval of the impulse response is excellent and the degradation, compared to the response as 

shown in fig. 6 of part 1, can be ignored in most practical applications. 

As shown in fig. 4, the variance increases at lower frequencies. This can, qualitatively, be 

understood by the decreasing statistics for lower frequencies: the number of cycles in the 5 sec. 

signal is less at lower frequencies. Furthermore, the signal strength decreases with lower 

frequencies, due to the properties of the tweeter as can be seen from fig. 5 below. 



   

Figure 5: The modulus of the tweeter response as a function of frequency, 

as derived from the measured impulse response by Fourier Transformation. 

Note the decrease in response below 300 Hz. 

Fig. 5 shows the modulus of the tweeter response as a function of frequency, derived from the 

measured loudspeaker impulse response. Note that the technique under study focusses on the short 

duration of the impulse response and not on an optimal determination of the frequency response 

curve. Other techniques are far better suited for that purpose. 

A part of the slight imperfections could be attributed to the statistical approach which is inherent 

to the use of Gaussian distributed white noise for the determination of the impulse response. It is 

possible to determine the impulse response of the loudspeaker by cross correlation of the 

loudspeaker filtered noise and the exciting Gaussian distributed white noise. When this is done, it 

is not unreasonable to assume that the statistical variability in it will be similar to that in the 

microphone output signal. Using this loudspeaker impulse response, instead of the independently 

measured one, could result in less imperfections for the microphone results. To verify this 

assumption, the loudspeaker filtered noise has been cross correlated with the Gaussian distributed 

white noise input signal, as shown in fig. 6. Subsequently, this result has then been used for the 

deconvolution algorithm and the results are presented in figs. 7 and 8. 



   

Figure 6: The cross correlation function between the exciting Gaussian 

distributed white noise and the loudspeaker filtered noise, converging to 

the impulse response of the loudspeaker. Compare with fig. 1 of part 1. 

   

Figure 7: The modulus of the frequency response of the simulated microphone 

as derived by deconvolution of the cross correlation function of loudspeaker + 

microphone (see fig. 2). Instead of the independently measured impulse 

response (see fig. 1 of part 1), the cross correlation of the loudspeaker filtered 

noise and the Gaussian distributed white noise (see fig. 6) has been used.  

Compare with fig. 3. 



   

Figure 8: The impulse response of the simulated microphone as derived 

by deconvolution of the cross correlation function of loudspeaker + 

microphone (see fig. 2). Instead of the independently measured impulse 

response (see fig. 1 of part 1), the cross correlation of the loudspeaker  

filtered noise and the Gaussian distributed white noise (see fig. 6) has  

been used. Compare with fig. 4. 

These results, presented in fig. 7 and 8, do show a decrease in the variability when compared with 

figs. 3 and 4. By enlarging the vertical scale by a factor of 25, the differences between the two 

results become more clear, as is shown in figs. 9 and 10. So at least a part of the variability can be 

attributed to the statistical nature of the measurement technique. Another advantage is, of course, 

that the impulse response of the loudspeaker is determined ‘on the fly’. So there is no need to 

verify whether the loudspeaker properties have changed between the initial measurement and the 

measurement of the MuT. 

 



   

Figure 9: The imperfections of the impulse response of fig. 4 are shown 

more clearly by extending the vertical scale by a factor of 25. Note the 

offset before the onset of the impulse response and the variability of the 

response in the tail. 

   

Figure 10: The imperfections of the impulse response of fig. 8 are shown 

more clearly by extending the vertical scale by a factor of 25. Note that 

both the offset before the onset of the impulse response and the variability 

in the tail are reduced, compared to fig. 9. 

However, a disadvantage is that the measurement microphone and the MuT share the same space, 

so the housings of both microphones could influence each other. This problem can be 

circumvented in the following way: as the Gaussian distributed white noise signal is coming from 

a computer file, the noise signal can be repeated without changes. So the measurements of the 

loudspeaker + MuT and the loudspeaker alone could be performed shortly after each other, yet 



using sound fields with identical properties. This prevents that the microphone housings could 

influence one another and the membranes of the MuT and the measurement microphone can be 

positioned at the same place. Also, the actual loudspeaker properties are determined, so one does 

not have to rely on the loudspeaker measurements of a while ago. 

4. Conclusions and future work 

The extension of the feasibility study has revealed that the use of Gaussian distributed white noise 

for the determination of microphone impulse responses is a realistic option, even with noise signals 

as short as 5 seconds. 

The cross correlation function, obtained in this way, is very close to the direct convolution of the 

loudspeaker and microphone impulse responses. 

The deconvolution of the cross correlation function, using a previously measured loudspeaker 

impulse response, shows some slight imperfections, due to the statistical nature of the 

measurement technique. This is most clear when looking at the lower frequencies of the frequency 

response curve. This technique is not optimized for the measurement of the frequency response 

curve, but it focusses on the short time interval of the impulse response. 

The determination of the microphone impulse response from the cross correlation function is, 

using a previously measured loudspeaker impulse response as input for the deconvolution process, 

sufficiently accurate for most practical applications. 

The loudspeaker impulse response can also be determined by cross correlating the loudspeaker 

filtered noise with the Gaussian distributed white noise. In that case, the same noise file is used as 

for the microphone impulse response. Using this loudspeaker impulse response instead of the 

independently measured one in the deconvolution, the statistical fluctuations in both inputs 

partially cancel. This will give a better result as has been proven by detailed analysis of the results 

of the Monte Carlo simulation. 

Simultaneous measurement, however, carries the risk of mutual influences on the measurement 

microphone and the MuT by their housings. By using two separate measurements, which use the 

same Gaussian distributed white noise computer file, this problem can be circumvented. This also 

offers the option to position the membranes of the MuT and the measurement microphones at the 

same place. The small price to pay is an additional measurement. Another advantage is that the 

loudspeaker properties are determined under almost the same conditions and at almost the same 

time. Therefore, its properties cannot have changed worth mentioning between the two 

measurements. 

By using longer noise signals, of course, the statistical fluctuations can be reduced to any desired 

level, at the expense of longer measurement times and data processing requirements. The statistical 

fluctuations reduce with the square root of the measurement time, thus rapidly increasing the data 

processing requirements. 

This feasibility study has shown that the measurement of microphone impulse responses can very 

well be done using Gaussian distributed white noise. By using this technique, it can be ascertained 



that the microphone will operate in its linear range and no specific hardware is required. So there 

is no reason to keep this information from the end users and it should therefore be demanded by 

(potential) end users to be provided by the manufacturers. 

The next steps include a real measurement in an anechoic chamber, similar to the one, used to 

measure the loudspeaker impulse response. The most interesting is, of course, to use a microphone 

with a known impulse response to compare the results. Another aspect is the development / 

optimization of the software for data processing. Although the software, used in this feasibility 

study, is, mathematically speaking, correct, it is not optimized for regular application. 

From a perceptional point of view, it would be very interesting to study if there is a relation 

between the perceived quality of microphones and their impulse responses. As different CD 

reconstruction filters with different impulse responses give different perceived quality 

assessments, there could be also differences between microphones, related to their temporal 

properties. 
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APPENDIX 1 

Generation of the simulated Gaussian distributed white noise 

--------------------------------------------------------------------------------------------------------------------- 

The file, containing 1 million samples of Gaussian distributed white noise is generated using the 

Random Number Generator (RND) of the computer. However, the RND generator provides 

numbers with a rectangular distribution between 0 and 1. This distribution has to be converted into 

a Gaussian distribution, which is done in the following way: 

- Call the RND generator, it returns a value between 0 and 1 

- Subtract 0.5 from its value, so it will be in the range between -0.5 and +0.5 

- Call again the RND generator, it will return another value between 0 and 1 

- Subtract 0.5 from this value too, so it will be a value between -0.5 and +0.5 and add this to 

the previous value 

- Repeat the above procedure until 21 values in the range of -0.5 to +0.5 have been summed 

Statistics learn that numbers, obtained in this way, will have a Gaussian distribution, but the related 

variance will differ from 1 (one). This can easily be solved by normalization. The correct value for 

normalization is the square root of 1.75 because of the number of summations (21) and the 

amplitude of the rectangular distribution (0.5). 

Each individual sample in the file is generated by the following instructions: 

Sigma0 = SQR(1.75)    Normalization constant 

A = RND - 0.5     Call RND generator and subtract 0.5 

FOR L = 1 TO 20    Repeat another 20 times 

    A = A + RND - .5    Sum all these values 

NEXT L 

A = A / Sigma0    Normalize 

STORE A     Store the sample in the file 

This procedure is repeated 1 million times and the file thus includes 1 million samples of Gaussian 

distributed white noise with a variance of 1 (one), which can be used for the Monte Carlo 

simulation. The sampling frequency will be equal to the playback frequency used by the D/A 

converter. A more detailed description of the generation procedure can be found in ref. 3. 

  



APPENDIX 2 

Properties of the simulated Gaussian distributed white noise 

The results and trustworthiness of the Monte Carlo simulation rely on the correctness of the 

properties of the Gaussian distributed white noise input, as the theory is based on the assumption 

that the input noise signal fulfills all the requirements, imposed on it. The three major requirements 

are: 

- The probability distribution of the noise is Gaussian. 

- The noise signal should be completely random, it should have no ‘memory’, in other words, 

the correlation between any two consecutive samples should be zero. 

- The requirement of randomness also means that the correlation between any pair of 

samples should be zero. 

To verify whether the data in the noise input file fulfill the above mentioned requirements, its 

properties have been verified by common signal analysis techniques. In fig. A-1, the non-

normalized probability distribution is shown (wiggly line), together with the theoretical Gaussian 

distribution curve (drawn line). (N.B. Non-normalized means that the integral of the curve is not 

equal to 1, so it is not a probability density distribution, but, for the sake of simplicity, it just has 

been scaled to 1 (one) at its maximum.) 

   

Figure A-1: The non-normalized probability function of the noise, 

as used in the Monte Carlo simulation (wiggly line) and the 

theoretical Gaussian distribution function (drawn line). 

N.B. The probability function of the noise is wiggly, because the calculation of the distribution 

uses ‘bins’ (in this case 200) of a certain width and each sample is assigned as an element to a bin, 

depending on its value. Therefore, the number of elements in each bin is limited and as a result, 

this number will show a certain statistical fluctuation, leading to the ‘wiggly’ character. 



It is obvious that the probability distribution follows the theoretical Gaussian distribution very 

well, in full agreement with the results of ref. 3 and thus fulfilling the first requirement. 

The noise should be completely random, so any two samples from the noise file should be 

completely independent. In other words, there should be no relation between the two, a sample 

should not be related to any other sample. This can be verified by the calculation of the 

autocorrelation function, which should be 1 (one) for zero time shift (because a sample should 

fully correlate with itself) and 0 (zero) for all other time shifts (in units of the inverse of the 

sampling frequency). 

The autocorrelation function is shown in fig. A-2 and behaves accordingly. In order to get a more 

detailed view of the correlation coefficients with time shifts larger than 0, the value at zero time 

shift has been put to zero and the vertical scale expanded by a factor of 20. The result is presented 

in fig. A-3. As can be seen, the correlation coefficients are very close to zero, with some remaining 

statistical fluctuations, as is to be expected with a limited number of samples (even if this number 

is a million). 

   

Figure A-2: The autocorrelation function of the noise as used in the 

Monte Carlo simulation. 



   

Figure A-3: The autocorrelation function of the noise as used in the Monte 

Carlo simulation with an extended vertical scale. For details: see text. 

So it can be concluded that the noise in the file, used for the Monte Carlo simulation, also fulfills 

the second and third requirement. The noise is therefore suited for the simulation and the 

conclusions from the simulation can be qualified as trustworthy. 


